FROM MODELLING OF PLASTICITY IN SX SUPERALLOYS TO HIGH RESOLUTION X-RAYS TCD PEAKS SIMULATION

Alain JACQUES

IJL-CNRS/Labex DAMAS

Outline

- A rather long introduction
- A bit of Physics
- Some Mechanics
- A few results
- Add crystal defects
- Some results with plasticity
- Conclusion

HT mechanical behavior of SX superalloys

• γ corridors (fcc):

a/2.<110> dislocations

 σ_{VM} > Orowan stress

• γ' rafts (Ni₃Al):

climb of dislocations

a'.[001] ($\sigma_{zz} = \sigma_a$) +Vac.

a'.[100] (σ_{xx})

a'.[010] (σ_{yy})

-Vac

Stresses? Strains?

In situ Three Crystal Diffractometry

BW5, P07 (DESY) and ID15 (ESRF)

100 to 150 KeV (Transmission)

G = (200)

scan: (200 pts): 300 s

Precision: ± 2 MPa

From peak positions: stresses

From peak positions: strain rates

Questions:

- Missing ingredient:
 - How do dislocations densities within the γ' phase vary with time?

•Relation between a'.[100] and a'.[010] dislocation densities within the γ ' rafts and the peaks shapes?

Questions:

- Missing ingredient:
 - How do dislocations densities in γ' vary with time?
- Modelling of plasticity: Experimental tests?

Polycrystals

- Distribution of strains between grains in an elastically strained material?
- During plastic strain: distribution of stresses between grains with different orientations/neighbourhood?

Questions:

- Missing ingredient:
 - How do dislocations densities vary with time?
- Modelling of plasticity: Experimental tests?

Can we simulate diffraction peaks To compare with experimental ones?

High resolution diffraction peaks

Modelling of diffraction peaks

- Coherent beam
- Small grains
- Strained Crystal lattice

Simulation de la diffraction cohérente d'un film polycristallin

Modelling of diffraction peaks

- Coherent beam
- Small grains
- Strained Crystal lattice
 U(r): Displ. Field

Scattered amplitude:

$$= \sum_{vol} A_0(r). F(\boldsymbol{G}, r). exp(-2i\pi. \boldsymbol{G}. U(r)). exp(-2i\pi. \boldsymbol{q}. r)$$

Fourier transform

Phase

Recipe

- Generate a microstructure
- Calculate the displacement field
- Get the phase
- Take a Fourier Transform or FFT (taking coherence into account)
- Calculate and plot intensities

Recipe

- Generate a microstructure
- Calculate the strain (stress) field
- Calculate the displacement field
- Get the phase
- Take a Fourier Transform or FFT
- Calculate and plot intensities

Model plasticity

Put dislocations

Fourier Methods for calculating U(r)

- Periodic microstructure (2μm)³
- Periodic Fields (displacement, strain, stress)
- Eigenstrain (plastic strain, coherence strain, defects...)
- Calculation in Real and Reciprocal spaces (Mura)
- Efficient algorithms even for inhomogeneous and anisotropic elasticity (Suquet, Anglin and others)

Fourier Methods for calculating U(r)

B.S. Anglin et al./Comput. Mat. Science 87 (2014) 209-217

Polarization tensor

$$\tau^{i}_{ij}(r) = \left(C_{ijkl}(r) - C^{0}_{ijkl}\right) \cdot \varepsilon^{i}_{kl}(r) - C_{ijkl}(r) \cdot \varepsilon^{p}_{kl}(r)$$

Iteration

$$\varepsilon^{i+1}_{ij}(r) = E^{i}_{ij} + TF^{-1} \left[\Gamma^{0}_{ijkl}(\mathbf{k}).TF \left(\tau^{i}_{kl}(r) \right) (\mathbf{k}) \right]$$

Rewritten for FFT instead of TF

Γ operator in Fourier space

(TF of the Green function)

Recipe

Calculate the stress, strain and displacement fields (lattice mismatch between phases)

Design a microstructure (2μm)³, 512³ voxels

Comparison with Experiment

- •T≈1160°C
- •f ≈ 50%
- Mismatch \approx -0,003
- •1 fit parameter

- Statistics of corridor widths
- Chemical inhomogeneity
- Dendritic solidification

Diffraction and plasticity:

continuous vs. discontinuous

G.ΔU integer

Two beams bright field TEM: Diffraction contrast

$$G.\Delta U = (3n+1)/3$$

Two beams bright field TEM: Diffraction contrast

Two beams bright field TEM: Diffraction contrast

$$G.\Delta U = (3n+3)/3$$

With plasticity: continuous vs. stepwise

Dislocation loops as platelets with eigenstrain

Shift: $\Delta U = n.b$

 $\exp(2i\pi.G. \Delta U) = 1$

(Restricted random distribution)

For each slip system (γ)

Array of dislocation loops

Eigenstrain: $\varepsilon_{pij} = n.b/l*f(h,k,l)$

Dislocations: peaks

Dislocations loops in the γ phase

Raw U field

Corrected U field

Phase

Tensile creep test

Recipe

- Generate a microstructure
- Calculate the strain (stress) field
- Calculate the displacement field
- Get the phase
- Take a Fourier Transform or FFT
- Calculate and plot intensities

Plastic strain within γ

- The γ phase is divided in 875 « platelets » of various sizes and positions
- Each platelet has its own Orowan stress σ O = (A/d)*LN(d/b)
- We can compute the "external stress", the coherence stresses, the contribution of dislocations, and the total average resolved shear stress on different slip systems within a platelet
- The shear increment for each slip system of a platelet is proportional to the difference between its resolved shear stress and the Orowan stress
- Dislocation loops are defined. Their contribution is recomputed
- Stop after equilibrium is reached

$$T = 1000$$
°C

0.4 factor on elastic constants vs. RT

A Orowan: isotropic

With plasticity

Phase

Tensile creep test

Tensile creep test

Tensile creep test g = (002)93.5 h 93 h •90 h • (002) 150 MPa 80 h • (002) 300 MPa 50 h 15 h 5 h 3 h 2 h **0** h -25 25 50 75 (a) -0,01 0,01 0 $\Delta\alpha$ (seconds of arc)

After cooling: dislocations only

γ' peak too thin: Segregation

Dendritic solidification

- Different compositions
- Different volume fractions
- Different lattice mismatchs

To do

γ too wide: Dislocations at interfaces

Conclusion

- A FFT-based tool to calculate the elastic fields within a complex microstructure
- Possibility to introduce crystal defects
- Simulation of HR XRD peaks for comparison to experimental data.
- The peaks' shapes are realistic and quite sensitive to details.
- The only fit parameters are Material parameters:

A discriminating test for constitutive laws