

Fakultät Mathematik & Naturwissenschaften, Fachrichtung Physik, Institut für Strukturphysik

Different ways of measuring texture gradients by diffraction

Werner Skrotzki
Institute of Structural Physics
Dresden University of Technology

Workshop_Labex DAMAS_Metz, 18.11.2015

Origin of texture gradients

Deformation processes are generally complicated due to frictional effects and flow instabilities causing texture gradients!

- tension
 - necking (+ shear banding (SB))
- compression
 - friction at anvils (+ SB)
- torsion
 - per se strain gradient (+ SB)
- bending
 - per se change from tension to compression + SB
- wire drawing, extrusion
 - friction at die walls (+ SB)
- rolling
 - friction at rolls (+ SB)
- equal channel angular pressing (ECAP)

friction at channel walls (+ SB)

texture \iff properties \iff property gradient

Requirements for measuring specific texture gradients by diffraction

Radiation		Beam size	Grain statistics
	d _{1/2}		
X-rays (soft)	1-50 μm	cm ²	
X-rays (hard)	>1 mm	mm²	
neutrons	>1 cm	cm ²	
electrons	$< 1 \mu m$	100 nm ²	problem

Examples:

Texture gradient in ECAP by diffraction of synchrotron radiation

Texture gradient in HPT nanomaterial by X-ray microdiffraction

Experimental station BW 5 at HASYLAB

Diffraction of synchrotron radiation at BW5, DESY/HASYLAB in Hamburg

ECAP: friction

plasticine in ECAP die

ECAP: sampling

Texture measurements with synchrotron radiation

Data analysis

detector image at ω_n

- read out of intensities along each Debye-Scherrer ring in steps of 5°
- intensity values are copied into the corresponding pole figure on an irregular grid
- interpolation on a regular 5°x 5° grid

Cu (route A, 1 pass): synchrotron texture

Cu (route A, 3 passes): synchrotron texture

Cu: intensity of texture components

Cu: deviation from ideal components

Negative ϕ_1 values indicate shift from ideal positions to the left in ODF

Tóth's flow line model of ECAP (I)

$$\phi = (d-x)^n + (d-y)^n = (d-x_0)^n$$

$$v_x = \lambda \frac{\partial \phi}{\partial y}, \quad v_y = -\lambda \frac{\partial \phi}{\partial x}$$

$$v_x = v_0 \left(\frac{d - y}{d - x_0} \right)^{n-1}, \quad v_y = -v_0 \left(\frac{d - x}{d - x_0} \right)^{n-1}$$

$$L_{xx} = \frac{\partial v_x}{\partial x} = -v_0 (1-n) (d-x)^{n-1} (d-y)^{n-1} (d-x_0)^{1-2n},$$

$$L_{yy} = -L_{xx}$$

$$L_{xy} = \frac{\partial v_x}{\partial y} = v_0 (1 - n) (d - x)^n (d - y)^{n-2} (d - x_0)^{1-2n},$$

$$L_{yx} = \frac{\partial v_y}{\partial x} = -v_0 (1-n) (d-y)^n (d-x)^{n-2} (d-x_0)^{1-2n}.$$

Tóth's flow line model of ECAP (II)

$$\dot{\varepsilon}_{xx} = -v_0 (1-n) (d-x)^{n-1} (d-y)^{n-1} (d-x_0)^{1-2n},
\dot{\varepsilon}_{yy} = v_0 (1-n) (d-x)^{n-1} (d-y)^{n-1} (d-x_0)^{1-2n},
\dot{\varepsilon}_{xy} = \frac{1}{2} v_0 (1-n) (d-x_0)^{1-2n} \left[(d-x)^n (d-y)^{n-2} - (d-y)^n (d-x)^{n-2} \right]$$

Flow line fit

Comparison experiment - simulation 30 MPa BP, oct. + non-oct. slip

Comparison experiment – simulation 60 MPa BP, oct. + non-oct. slip

nc sample preparation using inert gas condensation

igc pellet

$$\emptyset = 8 \text{ mm}$$

I = 0.3 - 0.5 mm

Work in collaboration with Yu. Ivanisenko

High pressure torsion (HPT)

http://www.ipam.ugatu.ac.ru/spd.html

Pd-10at.%Au

Work in collaboration with Yu. Ivanisenko

Grain size - shear strain

Texture measurement

Microdiffraction by $XR\mu D^2$

Measuring principle

Aims

correlated & spatially resolved

- texture
- stress

Bruker AXS D8 Discover

Equipment:

- Eulerian cradle with xyz-stage
- 2 Laser-video microscope
- 3 Low-power microfocus X-ray tube $I\mu S$
- 4 2D detector *VÅNTEC 2000*

Texture after a shear strain of 12.6

Texture components in simple shear deformed fcc metals

Component	Miller indices	Ευ	ıler angles	[°]
designation	{shear plane } <shear direction=""></shear>	φ1	Φ	φ2
A	$\{1\bar{1}\ \bar{1}\ \} \le 110 >$	0	35.26	45
\overline{A}	$\{\overline{1}11\}{<}\overline{1}\overline{1}0{>}$	180	35.26	45
A_1^*	{ 1 11}<112>	35.37	45	0
		125.37	90	45
A_2^*	$\{11\overline{1}\ \} \le 112 \ge$	144.74	45	0
		54.74	90	45
В	{ 112 }<110>	0	54.74	45
		120	54.74	45
\overline{B}	$\{1\overline{1}\overline{2}\} < \overline{1}\overline{1}0 >$	60	54.74	45
		180	54.74	45
C	{ 001 }<110>	90	45	0
		0	90	45
<111> or A fibre	{111}< <i>uvw</i> >			
<110> or B fibre	{ hkl }<110>			

Texture development with shear strain

Texture development with shear strain

Modelling of texture development

Contribution of GBS to total strain: 30%

TECHNISCHE UNIVERSITÄT DRESDEN

Conclusions

- Choice of radiation, beam size, grain statistics are important for measuring texture gradients.
- Texture gradients in deformed polycrystals are more the rule than the exception.
- Texture gradients lead to gradients in anisotropic properties.
- Texture gradients in torsion deformed samples can be used to show the texture development with shear strain.

Fakultät Mathematik & Naturwissenschaften, Fachrichtung Physik, Institut für Strukturphysik

Thank you for your kind attention!

Physics Building, Dresden University of Technology

Photo: A. Pukenas

	d _{1/2} $\left[\frac{\mu m}{\mu m}\right]$ Cu Ka $(\lambda = 1,54 \text{ A})$	d _{1/2} [cm] Neutronen (λ = 1,5 A)
Pb	2	2,3
Cu	15	0,8
Al	53	6,3
Fe	53	0,5
SiO ₂	76	2,5
CaCo ₃	36	2,1
NaAlSi ₃ O ₈	36 81	2,5
NaCl	42	0,7
CaSO,	32	2,5
PbS	4	3,5
ZnS	24	3,5 6,0
Fe ₂ O ₃	6	0,8